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Abstract. Several methods proposed to measure the angle γ in the KM unitarity triangle assumed that
the tree contribution to B− → π−K̄0 is purely due to annihilation contributions and is negligibly small.
This assumption has to be tested in order to have a correct interpretation of the experimental data. In
this paper we show that using SU(3) symmetry, the smallness of the tree contribution can be tested in a
dynamic model-independent way. We also derive several relations between CP violating rate differences for
B → PP decays without assuming the smallness of the annihilation contributions. These relations provide
important tests for the standard model of CP violation.

1 Introduction

Several rare two body decay modes of Bu,d mesons have
been observed at CLEO [1]. These data have provided
interesting information about the standard model (SM)
[2–5]. With increased luminosities for the B factories at
CLEO, KEK and SLAC, more useful information about
rare Bu,d decays will be obtained. The SM will be tested
in detail. At present the study of rare Bs decays is limited
by statistics. Only some weak upper limits on the branch-
ing ratios have been obtained [6]. However, more data on
Bs decays will become available from LHC in the future.
These data will help to further test the SM [2,7]. Theoreti-
cal predictions are, however, limited by our inability to re-
liably calculate many hadronic matrix elements related to
B decays. This prevents a full test of the standard model.
Lacking reliable calculations, attempts have been made to
extract useful information from symmetry considerations.
SU(3) flavor symmetry is one of the symmetries which has
attracted a lot of attention recently [8–10]. For example, it
has been shown that using SU(3) symmetry it is possible
to constrain [11] and to determine [4,12] one of the funda-
mental parameters, namely γ, in the SM for CP violation
by measuring several B meson decay modes.

Some of the methods proposed to measure γ depend on
the assumption that the tree amplitude for B− → π−K̄0 is
negligibly small [10,12]. To correctly interpret the experi-
mental data, the smallness of the tree contribution has to
be confirmed experimentally. It is often assumed that the
tree amplitude for B− → π−K̄0 receives annihilation con-
tributions only. If this is true, one has to make sure that
these contributions are small. Of course one has to make
sure that it is true that the decay amplitude is dominated
by annihilation contributions. There have been several dis-
cussions of constraining the annihilation contributions us-
ing an SU(3) analysis [13]. In this paper we will use SU(3)

symmetry to study further related problems, but look at
the problems in a different angle. We will first show how
one can use SU(3) relations to test the smallness of anni-
hilation contributions. We then show that the statement
that the tree amplitude receives annihilation contributions
only for B− → π−K̄0 is not strictly a SU(3) result. We
will show how to verify the smallness of the tree amplitude
for B− → π−K̄0 using several B decay modes. Finally, we
will use SU(3) symmetry to derive several useful relations
regarding CP violating rate differences without any as-
sumption about the size of the annihilation contributions.
These relations provide further tests for the SM of CP
violation and also the SU(3) symmetry.

2 SU(3) decay amplitudes for B → PP

The quark-level effective Hamiltonian up to one-loop level
in the electroweak interaction for hadronic charmless B
decays, including the corrections to the matrix elements,
can be written as

Hq
eff =

4GF√
2

[
VubV

∗
uq(c1O1 + c2O2)

−
12∑

i=3

(VubV
∗
uqc

uc
i + VtbV

∗
tqc

tc
i )Oi

]
. (1)

The operators are defined in [14]. The coefficients c1,2 and
cjk
i = cj

i − ck
i , with j indicating the internal quark, are the

Wilson coefficients (WC). These WC’s have been evalu-
ated by several groups [14], with |c1,2| >> |cj

i |. In the
above the factor VcbV

∗
cq has been eliminated using the uni-

tarity property of the KM matrix.
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At the hadronic level, the decay amplitude can be
generically written as

A = 〈final state|Hq
eff |B〉 = VubV

∗
uqT (q) + VtbV

∗
tqP (q), (2)

where T (q) contains contributions of the tree as well as
penguin type due to charm and up quark loop correc-
tions to the matrix elements, while P (q) contains contri-
butions purely from penguin due to top and charm loops.
We would like to clarify the notation used here. The am-
plitude T in (2) is usually called the “tree” amplitude; it
will also be referred to later on in the paper. One should,
however, keep in mind that it really contains the usual tree
current–current contributions proportional to c1,2 and also
the u and c penguin contributions proportional to cu

i − cc
i

with i = 3–10 which is small due to cancellation between
u and c internal quark contributions. Also, in general, it
contains long-distance contributions corresponding to in-
ternal u and c generated intermediate hadron states [15].
In the cases where the tree current–current contributions
are zero or very small, like the case of B− → π−K̄0 from
a factorization calculation, the penguin contributions may
play an important role. In our later analysis, we do not
distinguish the tree and the penguin contributions in the
amplitude T and try to find ways to test the smallness in
certain decays.

The relative strength of the amplitudes T and P is
predominantly determined by their corresponding WC’s
in the effective Hamiltonian. For ∆S = 0 charmless de-
cays, the dominant contributions are due to the tree op-
erators O1,2 and the penguin operators are suppressed
by smaller WC’s, whereas for ∆S = −1 decays, because
the penguin contributions are enhanced by a factor of
VtbV

∗
ts/VubV

∗
us ≈ 55 compared with the tree contributions,

penguin effects dominate the decay amplitudes. In this
case the electroweak penguins can also play a very impor-
tant role [16], in particular when studying CP violation
in B decays [17]. One should carefully keep track of the
different contributions.

The operators O1,2, O3–6,11,12, and O7–10 transform
under SU(3) as 3̄a + 3̄b + 6 + 15, 3̄, and 3̄a + 3̄b + 6 + 15,
respectively. These properties enable us to write the decay
amplitudes for B → PP in only a few SU(3) invariant
amplitudes.

For the T (q) amplitude, for example, we have [9]

T (q) = AT
3̄ BiH(3̄)i(Mk

l M l
k) + CT

3̄ BiM
i
kMk

j H(3̄)j

+ AT
6 BiH(6)ij

k M l
jM

k
l + CT

6 BiM
i
jH(6)jk

l M l
k

+ AT
15BiH(15)ij

k M l
jM

k
l + CT

15BiM
i
jH(15)jk

l M l
k,(3)

where Bi = (Bu, Bd, Bs) = (B−, B̄0, B̄0
s ) is a SU(3) triplet,

M j
i is the SU(3) pseudoscalar octet, and the matrices H(i)

contain information on the transformation properties of
the operators O1–12.

For q = d, the non-zero entries of the matrices H(i)
are given by

H(3̄)2 = 1, H(6)121 = H(6)233 = 1,

H(6)211 = H(6)323 = −1, H(15)121 = H(15)211 = 3,

H(15)222 = −2, H(15)323 = H(15)233 = −1, (4)

and for q = s, the non-zero entries are

H(3̄)3 = 1, H(6)131 = H(6)322 = 1,

H(6)311 = H(6)232 = −1, H(15)131 = H(15)311 = 3,

H(15)333 = −2, H(15)322 = H(15)232 = −1. (5)

Due to the anti-symmetry property of H(6) in ex-
changing the upper two indices, A6 and C6 are not in-
dependent [9]. For individual decay amplitudes, A6 and
C6 always appear together in the form C6 − A6. We will
absorb A6 in the definition of C6. In terms of the SU(3)
invariant amplitudes, the decay amplitudes for the various
B meson decays are given by

∆S = 0

TBu

π−π0(d) =
8√
2
CT

15,

TBu

π−η8
(d) =

2√
6
(CT

3̄ − CT
6 + 3AT

15 + 3C15),

TBu

K−K0(d) = CT
3̄ − CT

6 + 3AT
15 − CT

15,

TBd

π+π−(d) = 2AT
3̄ + CT

3̄ + CT
6 + AT

15 + 3CT
15,

TBd

π0π0(d) =
1√
2
(2AT

3̄ + CT
3̄ + CT

6 + AT
15 − 5CT

15),

TBd

K−K+(d) = 2(AT
3̄ + AT

15),

TBd

K̄0K0(d) = 2A3̄ + CT
3̄ − CT

6 − 3AT
15 − C15,

TBd

π0η8
(d) =

1√
3
(−CT

3̄ + CT
6 + 5AT

15 + C15),

TBd
η8η8

(d) =
1√
2

(
2A3̄ +

1
3
CT

3̄ − CT
6 − AT

15 + C15

)
,

TBs

K+π−(d) = CT
3̄ + CT

6 − AT
15 + 3C15,

TBs

K0π0(d) = − 1√
2
(CT

3̄ + CT
6 − AT

15 − 5C15),

TBs

K0η8
(d) = − 1√

6
(CT

3̄ + CT
6 − AT

15 − 5C15),

∆S = −1

TBu

π−K̄0(s) = CT
3̄ − CT

6 + 3AT
15 − CT

15,

TBu

π0K−(s) =
1√
2
(CT

3̄ − CT
6 + 3AT

15 + 7CT
15),

TBu

η8K−(s) =
1√
6
(−CT

3̄ + CT
6 − 3AT

15 + 9CT
15),

TBd

π+K−(s) = CT
3̄ + CT

6 − AT
15 + 3CT

15,

TBd

π0K̄0(s) = − 1√
2
(CT

3̄ + CT
6 − AT

15 − 5CT
15),

TBd

η8K̄0(s) = − 1√
6
(CT

3̄ + CT
6 − AT

15 − 5CT
15),

TBs

π+π−(s) = 2(AT
3̄ + AT

15),

TBs

π0π0(s) =
√

2(AT
3̄ + AT

15),

TBs

K+K−(s) = 2AT
3̄ + CT

3̄ + CT
6 + AT

15 + 3CT
15,

TBs

K0K̄0(s) = 2AT
3̄ + CT

3̄ − CT
6 − 3AT

15 − CT
15,
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TBs

π0η8
(s) =

2√
3
(CT

6 + 2AT
15 − 2CT

15),

TBs
η8η8

(s) =
√

2
(

AT
3̄ +

2
3
CT

3̄ − AT
15 − 2CT

15

)
.

The amplitudes for P (q) in terms of the SU(3) invari-
ant amplitudes can be obtained in a similar way. We will
denote the corresponding amplitudes by AP

i and CP
i .

Many analyses have been carried out using an SU(3)
classification of the quark-level diagrams [10]. In most
cases such an analysis will yield the same results as the
use of SU(3) invariant amplitudes. However, in some cases
a careless classification according to quark-level diagrams
would mean the loss of some vital information. An in-
teresting example is the tree amplitude for B− → π−K̄0.
Using quark-level diagram analysis, when the annihilation
contributions are neglected, the current–current operators
do not contribute to this decay. This implies, if the small
contributions from u and c penguins are neglected, in the
SU(3) invariant amplitude language, that

CT
3̄ − CT

6 − CT
15 = 0. (6)

This, however, is not generally true as has been confirmed
by model calculations [18,19]. In the quark-level diagram
classification there are only four independent amplitudes,
whereas in the general SU(3) invariant classification there
are five independent amplitudes [9]. Some information re-
lated to different combinations of quark-level diagrams
and their phases have been lost in the naive quark-level
diagram analysis. Specifically, four quark operators con-
taining d̄Γ1dq̄Γ2b and s̄Γ1sq̄Γ2b types of terms, where Γi

denote the appropriate Dirac matrices, and appearing in
the SU(3) invariant amplitudes, do not appear in the naive
tree quark diagram analysis. For this reason, we will use
the SU(3) invariant amplitude to carry out our analysis.

3 Test of the smallness of annihilation
contributions

The amplitudes A3̄,15 correspond to annihilation contribu-
tions. Here, we take the amplitudes with one of the light
quarks in the effective Hamiltonian corresponding to the
light quark inside the B mesons to be annihilation ampli-
tudes. The amplitudes A3̄,15 are annihilation amplitudes
as can be understood by noticing that the light-quark in-
dex in the B mesons are contracted with the Hamilto-
nian [20]. The A and E type of contributions in the quark
diagram classification are linear combinations of A3̄ and
A15. Based on model calculations [10] it has been argued
that these contributions are small. At present the annihi-
lation contributions cannot reliably be calculated. In view
of this, it is important to be able to test the smallness of
the annihilation contributions experimentally.

In this section we show that using SU(3) relations,
the size of the annihilation contributions can be measured
independent of dynamic models for the matrix elements,
and therefore the smallness of these amplitudes can be

tested. Two types of tests can be carried out. One of them
is to test the smallness of the annihilation contributions
of the SU(3) invariant amplitudes, and the other is to test
the smallness of the tree contribution to B− → π−K̄0.

The best way to test the smallness of the annihila-
tion contributions is to use processes involving only A3̄,15.
From the discussions of the previous section, we find that
there are only three such processes. They are: (a) B̄0 →
K+K− [21]; (b) Bs → π−π+; and (c) Bs → π0π0. Their
decay amplitudes are given by

A(Bd → K+K−) = 2VubV
∗
ud(A

T
3̄ + AT

15)

+2VtbV
∗
td(A

P
3̄ + AP

15),

A(Bs → π−π+) = 2VubV
∗
us(A

T
3̄ + AT

15)

+2VtbV
∗
ts(A

P
3̄ + AP

15),

A(Bs → π0π0) =
1√
2
A(Bs → π+π−). (7)

It is clear that these decays receive annihilation contri-
butions only. However, there is a crucial difference be-
tween (a), and (b) and (c). The decay amplitude for (a)
is dominated by the tree contribution and the amplitudes
for (b) and (c), being ∆S = −1 processes, are dominated
by penguin contributions. If annihilation contributions are
small, these processes will all have small branching ratios.
At present, these three modes have not been observed.
The best constraint is from B̄0 → K+K− with an up-
per bound on the branching ratio of 0.24 × 10−5 at the
90% confidence level from CLEO [1]. However, this still
allows substantial annihilation contributions. The annihi-
lation contributions to the tree amplitude to B− → π−K̄0

can reach 10% of the total amplitude. We have to wait for
more data to verify the smallness of the annihilation con-
tributions. Conclusions drawn with such an assumption
should be viewed with caution.

One should be aware that even if the annihilation con-
tributions are small, this does not mean that the tree am-
plitude for B− → π−K̄0 is small. One also has to verify
that the tree amplitude receives annihilation contributions
only. Let us now study how this can be verified. From the
SU(3) decay amplitudes listed in the previous section, we
see that the tree contribution to this process is given by

TBu

π−K̄0(s) = CT
3̄ − CT

6 + 3AT
15 − CT

15. (8)

This is not a pure annihilation process as for B̄0 → K+K−,
Bs → π−π+ and Bs → π0π0. The tree amplitude to
B− → π−K̄0 is a pure annihilation contribution only if
CT

3̄ −CT
6 −CT

15
= 0. In order for this to be true, not only the

magnitude of the invariant amplitudes should be arranged,
but also the phases of these amplitudes must be arranged
to have the cancellation. However, from our experience
with K and D systems, we know that different SU(3) (or
isospin) amplitudes develop different phases. It is quite
possible that the same situation happens in B systems
[22,23]. To have a better understanding of the situation,
let us perform a calculation of the tree decay amplitude
for T (B− → K̄0π−) in the factorization approximation
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neglecting the annihilation contributions, but with inser-
tions of possible final-state interaction phases for different
amplitudes. We have [3,17]

T (B− → π−K̄0) = VubV
∗
us(e

iδ1T1 − eiδ3T3),

T1 = T3 =
1
3
i
GF√

2

[(
c1 +

c2

N

)
fπFBK

0 (m2
π)(m2

B − m2
K)

+
( c1

N
+ c2

)
fKFBπ

0 (m2
K)(m2

B − m2
π)

]
, (9)

where N is the number of colors. We have used the follow-
ing definitions for the decay constants and form factors:

〈P |q̄γµ(1 − γ5)u|0〉 = ifP Pµ,

〈P (k)|q̄γµb|B̄0(p)〉 = (k + p)µFBP
1

+(m2
P − m2

B)
qµ

q2 (FBP
1 (q2) − FBP

0 (q2)), (10)

where q = p − k. The first term eiδ1T1 in the amplitude
T (B− → π−K̄0) is equal to CT

3̄ −CT
6 which is an I = 1/2

amplitude, while the second term eiδ3T3 is equal to CT
15

,
which is an I = 3/2 amplitude. We see that the cancel-
lation happens only when δ1 = δ3, which is an additional
assumption about the dynamics beyond SU(3) symmetry.
It has been shown that the present data do not exclude a
large final phase difference δ1 −δ3 [3,23]. The smallness of
C3̄ − C6 − C15 has to be tested experimentally.

To have a model-independent test of this cancellation,
that is, C3̄ − C6 − C15 = 0, one needs to find processes
which depend on the same combination of the SU(3) in-
variant amplitudes as the tree amplitude for B− → π−K̄0.
To this end, we carry out an analysis similar to [19] for
B− → K−K0 using the parametrization of the SU(3)
decay amplitudes in the previous section. Using B− →
K−K0 decay to obtain useful information for the differ-
ent amplitudes is also studied in [15]. We have

A(B−→ K−K0) = VubV
∗
udT

Bu

K−K0(d) + VtbV
∗
tdP

Bu

K−K0(d).
(11)

As has been mentioned earlier, the relative strength of the
T and P amplitudes is predominantly determined by their
WC’s, and to a good approximation A(B− → K−K0) ≈
VubV

∗
udT

Bu

K−K0(d). In the SU(3) limit

TBu

π−K̄0(s) = TBu

K−K0(d) = C3̄ − C6 + 3A15 − C15. (12)

Once the branching ratio for B− → K−K0 is measured,
we have information about the size of |TBu

K̄0π− |. If experi-
mentally the branching ratio B− → K−K0 indeed turns
out to be small, this would confirm the smallness of C3̄ −
C6 −C15 if annihilation contributions are also found to be
small from the branching ratio measurements for B̄0 →
K+K−, Bs → π+π− and Bs → π0π0. In this case, con-
clusions drawn with the assumption TBu

π−K̄0(s) = 0 would
be correct. Otherwise, the results obtained with this as-
sumption cannot be trusted. Unfortunately, at the present
experimental upper bound, with Br(B− → K−K0) <

0.93 × 10−5 at the 90% confidence level from CLEO [1],
still large tree contributions to B− → π−K̄0 are allowed.

We stress that the smallness of the annihilation contri-
butions and the smallness of the tree amplitude for B− →
π−K̄0 are two independent assumptions and should be
tested separately as discussed in the above. These tests
have important implications for the determination of the
angle γ in the KM unitarity triangle, because some of the
methods proposed require that the tree amplitude is small
so that A(B− → π−K̄0) = Ā(B+ → π+K0). At present
this is not well tested. We have to wait for future experi-
ments to learn more.

4 CP asymmetry relation between B decays

From the previous discussions, we see that predictions
with certain dynamic assumptions about the amplitudes
suffer from possible uncertainties and need to be tested.
It is desirable that tests for the SM can be performed in
a dynamic model independent way. In this section we will
derive several such relations, which can be used to test the
standard model. These relations are related to the CP vi-
olation rate difference defined as

∆(B → PP ) = Γ (B → PP ) − Γ (B̄ → P̄ P̄ ). (13)

SU(3) symmetry relates ∆S = 0 and ∆S = −1 decays.
One particularly interesting class of relations are the ones
with T (d) = T (s) = T and P (d) = P (s) = P . For this
class of decays, we have [20,24]

A(d) = VubV
∗
udT + VtbV

∗
tdP,

A(s) = VubV
∗
usT + VtbV

∗
tsP. (14)

Due to the different KM matrix elements involved in A(d)
and A(s), although the amplitudes have some similari-
ties, the branching ratios are not simply related. However,
when considering the rate difference, ∆(B → PP ), the
situation is dramatically different. Because of the simple
property of the KM matrix element [25], Im(VubV

∗
udV

∗
tbVtd)

= −Im(VubV
∗
usV

∗
tbVts), we find that in the SU(3) limit

∆(d) = −∆(s), (15)

where ∆(i) = (|A(i)|2 − |Ā(i)|2)λab/(8πmB) is the CP
violating rate difference defined earlier and λab = (1 −
2(m2

a + m2
b)/m2

B + (m2
a − m2

b)
2/m4

B)1/2 with ma,b being
the masses of the two particles in the final state.

In the SU(3) limit we find the following equalities:

(1) ∆(B− → K−K0) = −∆(B− → π−K̄0),
(2) ∆(B̄0 → π−π+) = −∆(Bs → K−K+),
(3) ∆(B̄0 → K−K+) = −∆(Bs → π−π+)

= −2∆(Bs → π0π0),
(4) ∆(B̄0 → K̄0K0) = −∆(Bs → K0K̄0),
(5) ∆(B̄0 → π+K−) = −∆(Bs → K+π−),
(6) ∆(B̄0 → π0K̄0) = −∆(Bs → K0π0)

= 3∆(B̄0 → η8K̄
0) = −3∆(Bs → K0η8). (16)
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Note that in the SU(3) limit, beside the above relations,
there are several other relations for the branching ratios;
that is, some of the decay amplitudes are actually equal
in the SU(3) limit. We have

Γ (Bs → π+π−) = 2Γ (Bs → π0π0),
Γ (B̄0 → π0K̄0) = 3Γ (B̄0 → η8K̄

0),
Γ (Bs → K0π0) = 3Γ (Bs → K0η8). (17)

The last two equalities for the decay rate involve η8 which
mixes with η1. It will be difficult to carry out these tests.
The branching ratio for the first one may be small due
to pure annihilation contributions, although it has to be
tested independently. This test will also be difficult to
carry out.

If it turns out that the annihilation contributions are
all small as can be tested in B− → K−K0, Bs → π+π−
and Bs → π0π0, there are additional relations for the rate
differences. We find

(1) ≈ (4),
(2) ≈ (5),
(6) ≈ ∆(B̄0 → π0π0) (18)

In the limit that annihilation contributions are small, it is
difficult to perform tests related to (1), (3) and (4) because
the decay rates involved are all small. The equalities of (2)
and (5) provide the best chances to test the SM.

The above non-trivial equalities do not depend on the
numerical values of the final-state rescattering phases. Of
course, these relations are true only for the SM with three
generations. Therefore, they provide tests for the three
generation model.

The relations obtained above hold in the SU(3) limit.
Let us now study how these relations are modified when
SU(3) breaking effects are included. Since no reliable cal-
culational tool exists, in the following we will use a factor-
ization approximation neglecting the annihilation contri-
butions to estimate the SU(3) breaking effects for (2) for
illustration. We have [20]

TBd

π−π+(d) = i
GF√

2
fπFBπ

0 (m2
π)(m2

B − m2
π)

×
[

1
N

c1 + c2 +
1
N

cuc
3 + cuc

4 +
1
N

cuc
9 + cuc

10

+
2m2

π

(mb − mu)(mu + md)

×
(

1
N

cuc
5 + cuc

6 +
1
N

cuc
7 + cuc

8

)]
,

TBs

K+K−(s) = i
GF√

2
fKFBK

0 (m2
K)(m2

B − m2
K)

×
[

1
N

c1 + c2 +
1
N

cuc
3 + cuc

4 +
1
N

cuc
9 + ccu

10

+
2m2

K

(mb − mu)(mu + ms)

×
(

1
N

cuc
5 + cuc

6 +
1
N

cuc
7 + cuc

8

)]
. (19)

The amplitudes P (d, s) are obtained by setting c1,2 = 0
and replacing cuc

i by ctc
i .

Using the fact m2
π/(mu + md) ≈ m2

K/(mu + ms), we
obtain

∆(B̄0 → π+π−)

≈ − (fπFBπ
0 (m2

π))2

(fKFBsK
0 (m2

K))2
λππ

λKK
∆(Bs → K+K−), (20)

In the above, the final-state interaction phases for the dif-
ferent amplitudes have been assumed to be zero. We point
out that as long as these phases satisfy SU(3) symmetry
relations, the above equation does not change.

Similarly we also have

∆(B̄0 → π+π−)

≈ − (fπFBπ
0 (m2

π))2

(fKFBπ
0 (m2

π))2
λππ

λπK
∆(B̄0 → π+K−)

≈ (fπFBπ
0 (m2

π))2

(fπFBsK
0 (m2

π))2
λππ

λπK
∆(B̄s → K+π−). (21)

The form factors are usually assumed to have the pole-
form dependence on q2. For the above cases the form fac-
tors are approximately equal to their values at q2 = 0
because the B meson mass is much larger than the π
and K meson masses. For the same reason, λππ/λπK ≈
1. Independent of the specific value for the ratio r =
FBπ

0 (0)/FBsK
0 (0), we obtain the following relations:

∆(B̄0 → π+π−) ≈ − f2
π

f2
K

∆(B̄0 → π+K−),

∆(Bs → K+K−) ≈ −f2
K

f2
π

∆(Bs → π−K+). (22)

The first equality above has already been obtained be-
fore [20]. The ratio r is expected to be about one. If this
is indeed the case, one would obtain ∆(B̄0 → π+π−) ≈
∆(Bs → K+π−).

It has been shown that the normalized asymmetry,
that is, the rate difference divided by the averaged par-
ticle and anti-particle branching for B̄0 → π+K−, can be
as large as 20% [3,23]. Such a large value can be measured
in the future at B factories. The standard model can be
tested using the relations discussed in this section.

5 Conclusions and discussions

Several methods proposed to measure the fundamental pa-
rameter γ in the KM unitarity triangle depend on the as-
sumption that A(B− → π−K̄0) = Ā(B+ → K0π+). In
order for this assumption to hold it is not sufficient to
only require the annihilation contributions to be small.
One also has to show that the tree amplitude only re-
ceives annihilation contributions. In this paper we have
shown that these two conditions can be separately tested
at B factories in the near future. Of course, one should
also keep an open mind for the possibility that the anni-
hilation contribution A15 is not small, but the total tree
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contribution CT
3̄ − CT

6 + 3AT
15

+ CT
15

yet is small. This can
also be tested by measuring the B− → K−K0 branching
ratio because the dominant contribution to the amplitude
is proportional to the tree amplitude for B− → π−K̄0.

We have also derived several useful relations using
SU(3) symmetry without any additional dynamic-model
assumptions about the amplitudes. These relations will
provide further tests for the standard model of CP vio-
lation. The SU(3) symmetry is expected to be broken in
reality. Therefore the validity of some of the methods for
measuring γ and the relations derived in this paper remain
to be studied.

Let us conclude with a discussion of the validity of
SU(3) relations for B meson decays. We have used a fac-
torization approximation to give some idea of how the
SU(3) breaking effects affect the results. We stress that
these results are only indicative. One should not exclude
the possibility that the experimental results obtained will
be actually closer to the SU(3) limit results. Even though
we know that SU(3) symmetry is broken in reality, the
breaking pattern may be much more subtle than a simple
decay constant rescaling as indicated by our factorization
calculations in the previous sections. To see why this might
happen let us consider the B− → D0π− and B− → D0K−
decays.

We find that in the SU(3) limit the ratio R = Br(B−
→ D0K−)/Br(B− → D0π−) is equal to |Vus/Vud|2(λDK/
λDπ). The value R = 0.049 obtained in the SU(3) limit is
more closer to the experimental central value of 0.055 ±
0.015 ± 0.005 from CLEO [26] than the factorization esti-
mate with SU(3) breaking, R ≈ (f2

K/f2
π)|Vus/Vud|2(λDK/

λDπ) ≈ 0.07. Of course, the experimental result is consis-
tent with both predictions at present. The point of this
example is that one should be careful with a factoriza-
tion estimate of the SU(3) breaking effects. SU(3) rela-
tions may turn out to be better than expected. We have
to wait for more experimental data to provide us with
more information.

The above discussion also applies to the relation be-
tween the tree amplitude AT for B− → π−π0 and the I =
3/2 tree amplitude AT

3/2 for the B− → π0K− and B− →
π−K̄0 decays. The experimental value may turn out to be
closer to the SU(3) limit result than the relation estimated
by factorization [4,12], AT

3/2 = (f2
K/f2

π)|Vus/Vud|2AT. This
also has important implications for the determination of
γ. Any method to determine γ using this relation should
be analyzed with care.
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